FUENTE: http://www.visionlearning.com/library/module_viewer.php?mid=57&l=s

De muchas maneras, el agua es un líquido milagroso. Es esencial para todos los organismos vivos (de este planeta, por lo menos) y es llamado, comunmente como el solvente universal porque muchas substancias se disuelven en el. Estas propiedades únicas del agua resultan de la manera en que moléculas individuales de H2O interactúan entre ellas.

Molécula de agua 2 - Distribución electrónica en H2O
Distribución electrónica en H2O

En otra lección discutimos los dipolos que se forman a través de lamolécula de agua como resultado de un covalente polar que se une entre el hidrógeno y el oxígeno. Ya que los electrones que se enlazan son compartidos desigualmente por los átomos de hidrógeno y de oxígeno , una carga parcial negativa (ð-) se forma en la parte del oxígeno de la molécula de agua, y una carga parcial positiva (ð+) se forma en la parte del hidrógeno. Puesto que los átomos de hidrógeno y oxígeno en la molécula contienen cargas opuestas (aunque parciales), moléculas de agua vecinas son atraídas entre ellas como pequeños imanes. La atracción electrostática entre el hidrógeno ð+ y el oxígeno ð- en las moléculas adyacentes es llamada enlace de hidrógeno.

hydrogen - bond - Figura 2: Enlace de Hidrógeno entre Moléculas de Agua
Figura 2: Enlace de Hidrógeno entre Moléculas de Agua

El enlace de hidrógeno hace que las moléculas de agua se mantengan unidas. Mientras que los enlaces de hidrógeno son relativamente débiles comparados a otro tipos de enlaces, son lo suficientemente fuertes como para darle al agua muchas propiedades únicas. Por ejemplo, el enlace de hidrógeno hundió el Titanic, y el enlace de hidrógeno le permite al lagarto Basilisk caminar sobre el agua (como resultado, el Basilisk ha ganado el apodo del lagarto ‘Jesús’).

¿Cómo hace esto el enlace de hidrógeno? Bueno, empecemos con el Titanic. El Titanic se hundio porque golpeó un iceberg – un pedazo de hielo que flota en la superficie del océano. La razón por la que el hielo flota es por el enlace de hidrógeno. En la forma líquid del agua, el enlace de hidrógeno empuja las moléculas de agua a unirse. Como resultado, el agua líquida tiene una estructura relativamente compacta y densa. La animación siguiente ilustra esta idea.

Agua Líquida y el Enlace de Hidrógeno

Concept simulation – Reenacts hydrogen bonding between molecules of liquid water.

(Flash required)

A medida que el agua se congela, las moléculas se congelan en su lugar y se empiezan a acomodar en una estructura rígida en forma de rejilla, tal como se muestra en la siguiente animación.

Hielo y Enlace de Hidrógeno

Concept simulation – Reenacts hydrogen bonding between molecules of solid water.

(Flash required)

La estructura que se forma en hielo sólido de cristal tiene realmente grandes huecos. Por consiguiente, en un volumen dado de hielo, hay menos moléculas de agua que en el mismo volumen de agua líquida. En otras palabras, el hielo es menos denso que el agua líquida y flotará en la superficie del líquido. Ponga juntos un largo pedazo de hielo y un barco, y empezará a ver los problemas que surgen.

La Tensión de Superficie: Tal como hemos visto, las moléculas de agua vecinas se atraen unas a otras. Las moléculas en la superficie del agua líquida tienen menos vecinas y, como resultado, su atracción hacia las moléculas de agua que están cerca se ve aumentada. Este aumento de atracción se llama tensión de superificie y hace que la superficie del líquido sea más difícil de atravesar que al interior.

Tensión en la superficie

Cuando se coloca cuidadosamente un objeto pequeño que normalmente se hundiría en el agua, éste puede permanecer suspendido en la superficie debido a la tensión de la superficie. El lagarto Basilisk hace uso de la alta tensión de la superficie del agua para alcanzar la increíble hazaña de caminar en la superficie del agua. Basilisk no puede realmente caminar, corre sobre el agua, moviendo sus patas antes que atraviesen la superficie. Observemos:

El Lagarto ‘Jesus’ (473k película)

El Agua como Solvente

La carga parcial que se desarrolla a través de la molécula de agua la convierte en un excelente solvente. El agua disuelve muchas substancias al rodear partículas cargadas ‘empujadas’ hacia la solución. Por ejemplo, lasal común de mesa, el cloruro de sodio, es una substancia iónica que contiene iones alternos de sodio y cloro.

NaCl-crystal - Figura 3: El Cloruro de Sodio contiene Na+ y Cl- iones
Figura 3: El Cloruro de Sodio contiene Na+ y Cl iones

Cuando se añande sal de mesa al agua, las cargas parciales en la moléculade agua se sienten atraídas al Na+ y a los iones Cl. Las moléculas de agua se encaminan hacia la estructura de cristal y entre los iones individuales, rodeándolos y disolviendo lentamente la sal. Las moléculas de agua van en realidad a alinearse de manera diferente dependiendo en los iones que están siendo empujados en la solución. La parte negativa de oxígeno de las moléculas de agua rodearan los iones de sodio positivos; las partes de hidrógeno positivas rodearán los iones de cloro negativos.

NaCl-dissolve - Figura 4: Sal de mesa disolviéndose en Agua
Figura 4: Sal de mesa disolviéndose en Agua

De una manera similar, cualquier substancia que contiene una carga eléctrica neta, incluyendo los compuestos iónicos y la molécula covalente polar(esas que tienen un dípolo), pueden disolverse en el agua. Esta idea también explica el por qué algunas substancias no se disuelven en el agua. El aceite, por ejemplo, es una molécula no-polar. Ya que no hay una carga eléctrica neta a través del aceite, éste no atrae las moléculas de agua y sise disuelve en el agua.

Puedes decir algo sobre la entrada actual…

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s